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Abstract

By utilizing the center of gravity-standard deviation ellipse, kernel density estimation, and 
GeoDetector, this paper analyzes the spatial distribution pattern of China's agricultural green TFP 
and the dynamic evolution law of its distribution in different regions based on the provincial-level 
related input-output data of China's agriculture from 2001 to 2020. It also investigates the factors that 
affect its spatial differentiation. We find that (1) China's agricultural green TFP, which has a long-term 
upward trend and an average annual growth rate of 3.21% between 2001 and 2020, is mostly fueled by 
technological advancements in the field of agriculture. (2) Agricultural green TFP tends to move east-
northward, and its spatial distribution is gradually expanding, showing a northeast-southwest pattern. 
(3) Agricultural green TFP in the country as a whole and the three major food regions has increased 
over the study period, with absolute differences within the country gradually narrowing, and cities 
with higher agricultural green TFP within the regions approaching the average, and the polarization 
phenomenon easing. (4) The main determinants of the spatial divergence of green TFP in agriculture are 
the replanting index, agricultural output per capita, and the degree of financial support for agriculture. 
The strength of the interactions between the various factors is significantly greater than the explanatory 
power of any one factor.
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Introduction

With the frequent occurrence of extreme weather 
events, which pose a threat to the human economy 
and society, reducing emissions of greenhouse gases 
has become a focus of attention for countries around  

the world. The IPCC claims that land-use activities 
like forestry and agriculture are important contributors 
to greenhouse gas emissions, making up roughly  
a quarter of all net anthropogenic emissions. In 2015, 
China enacted the "One Control, Two Reductions, 
Three Fundamentals" policy, proposing measures to 
reduce emissions and sequester carbon, such as water 
conservation in agriculture, no increase in the use of 
fertilizers or pesticides, and comprehensive utilization 
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of agricultural waste [1]. In June 2022, the relevant 
government departments implemented 10 major actions 
to reduce emissions and sequester carbon, including 
methane emission reduction in rice paddies, low-carbon 
emission reduction in livestock and poultry, emission 
reduction and remittance enhancement in the fisheries 
industry, comprehensive utilization of straw and the 
construction of a monitoring system, etc. After a series 
of actions, what is the state of China’s agricultural green 
development at the moment, and how has it changed from 
before emission reduction and carbon sequestration? 
Changes in green total factor productivity (TFP), 
which incorporates carbon emissions from undesirable 
outputs, are used to study the current status of China’s 
agricultural green development and its evolution and to 
review the effectiveness of China’s current agricultural 
emission reduction and carbon sequestration. 

Traditional measures of productivity are not a true 
reflection of agricultural development achievements 
because they ignore resource and environmental factors 
[2]. For this reason, some scholars have examined 
the effectiveness of greening agriculture in terms of 
agricultural productivity, taking into account resource 
and environmental factors [3, 4], which is called 
agricultural green TFP. As a quantitative indicator, 
green TFP in agriculture can be a good reflection of 
the current state of regional development of high-
quality agriculture, and its changes can well reflect the 
development of regional agricultural green production 
technology [5]. So, the choice of agricultural green 
TFP and its changes to assess the regional agricultural 
high-quality development has a strong rationality. 
Choosing how to measure TFP, Tone et al. [6] added 
slack variables and constructed a non-radial, non-angle 
DEA-SBM (Slack-Based Measure) model that takes into 
account non-expected outputs, in order to reduce the 
measurement bias due to radial and angular choices in 
traditional DEA models. Coupled with the fact that DEA 
models, unlike parametric analysis, require subjective 
analysis to determine the form of the production function 
to be used, the convenience and practicality of the SBM 
model makes it the most used method for measuring 
green TFP in agriculture. However, if one wants to 
analyse green TFP in agriculture from a dynamic 
change perspective, one cannot only consider the 
SBM model, which analyses the efficiency of different 
frontiers, and the introduction of the ML productivity 
index based on this model can solve the problem of 
not being able to make dynamic comparisons. Sheng 
et al. [7] analysed the changes in agricultural TFP  
in China’s plantation and animal husbandry industries 
in different periods using the index method and 
found the following pattern: rapid but uneven growth  
in the period after reform and opening up. Taking 2009 
as the cut-off point, growth was around 2.4 percent per 
year until then; however, average productivity growth 
slowed to 0.9 percent after 2009 but has gradually 
recovered since 2012. Using a super-efficient SBM 

model, Liu et al. [8] find that China’s agricultural green 
TFP generally shows a fluctuating growth trend, with 
increasing interprovincial disparities. The average 
annual level of green TFP in agriculture is higher 
in the east than in the other regions. Zhong et al. [9] 
used the Metafrontier ML index to compare the green 
TFP of agriculture in China and different regions. 
First, at the national level, the level of efficiency is low 
and fluctuating, but there is an increasing trend, and 
second, at the regional level, the overall characteristics  
over time are like the trend at the national level, but 
the efficiency value decreases sequentially. Zhou et 
al. [10] utilized SBM-ML to estimate the increase of 
green TFP in agriculture as part of their study on the 
effects of digital economic development on sustainable 
agriculture. During the study’s sample period, the 
AGTFP’s EC was marginally lower than that of the TC, 
indicating that there is still an opportunity for efficiency 
improvement.

Based on current research, the selection of 
measurement methodology for measuring the correlation 
index relies heavily on the SBM model. However, the 
use of this model to measure TFP results may introduce 
bias. Most studies typically begin the selection of 
input indicators with factors of production, although 
variations exist in the particular indicators employed. 
The undesirable output indicators in existing studies 
are mainly selected from agricultural surface source 
pollution [11], carbon emissions [12], and indicators that 
include both of the above [13, 14].

There is a need for improvement in measuring 
green total factor productivity in agriculture due to the 
bias present in existing studies. This bias stems from 
differing research methodology, study sample periods, 
input indicators, and unexpected output perspectives. 
This study examines the current state of agricultural 
green development in the context of policy that places 
a greater emphasis on emission reduction and carbon 
sequestration. As a result, carbon emissions are 
chosen as an undesired output, and agricultural green  
TFP at the provincial level in China is scientifically 
measured using the global reference EBM function 
model and the ML productivity index. The spatial 
distribution pattern and dynamic evolution trend of 
China’s agricultural green TFP are described using the 
standard deviation ellipse and kernel density estimation 
methods. This provides an intuitive interpretation of the 
spatial variability of China’s agricultural green TFP, 
offering a theoretical basis for coordinated development 
among different regions. Based on the idea of spatial 
distribution consistency, an empirical study of the 
factors influencing the spatial differentiation of China’s 
agricultural green TFP is then carried out using the 
GeoDetector tool. By identifying the factors that cause 
spatial differentiation, this research presents a practical 
foundation for enhancing green TFP in agriculture across 
varied regions.
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Materials and Methods

Research Indicators and Data Sources

Agriculture, namely farming, is the topic of study in 
this paper. Due to variations in research focus and data 
accessibility, seven factors were used as inputs, namely 
land, labor, machinery, irrigation, pesticides, fertilizers, 
and agricultural films. The details of these indicators are 
presented in Table 1.

It should be noted that among the input indicators, 
labor and machinery inputs are not directly available 
and need to be obtained by multiplying the relevant 
broad agricultural total by the share of total agricultural 
output value in total agricultural, forestry, animal 
husbandry, and fishery output value [15]. Among 
the output indicators, the gross value of agricultural 
production is adjusted for the 2001-based producer 
price index for agricultural products in order to reduce 
the impact of price changes. Based on Liu et al. [16], 
the accounting of agricultural carbon variables takes 
into consideration sources including cropland, tillage, 
livestock, fertilizers, pesticides, and mechanical power 
[17]. Reasons for choosing carbon emissions as a non-
desired output are: this paper primarily centers on the 
impact of carbon emission changes on agricultural 
green total factors, in the context of achieving the dual-
carbon target. Secondly, the data employed to measure 
the carbon emissions are more objective and accurate. 
Furthermore, currently, there is a disagreement among 
the academic community regarding pollutant selection, 
particularly concerning the narrowly defined agricultural 
production, and it is not in line with reality to measure 
rural domestic pollution as a non-desired output.

The data aforementioned information is primarily 
drawn from the database of the National Bureau of 
Statistics of China, and any gaps are filled in by official, 
reliable sources like the China Statistical Yearbook, 
China Agricultural Statistical Yearbook, China Water 
Resources Statistical Bulletin, and a few provincial and 
municipal statistical yearbooks.

Methodology

Super-EBM-GML Productivity Index

To measure green TFP in agriculture, this study uses 
the DEA method. The approach was initially put out by 
Charnes et al. [18], and it was expanded upon by Banker 
et al. [19], leading to the development of a number of 
efficiency evaluation models. This study employs the 
EBM model to accurately portray the proportionality 
between the actual value and the desired value. It is 
based on the aforementioned SBM model [20] and 
makes use of the EBM function presented [21], which 
contains both radial and non-radial EBM functions. The 
specific model is presented in the following way. 

       (1)
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     (3)

       (4)

               (5) 

where γ* denotes the optimal efficiency value 
measured by the EBM model; θ denotes the efficiency 
value under radial conditions; si
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i’s slack under non-radial situations; λ is the relative 
weight of the input factors; (xio,yro) denotes the input-
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−), slack vectors representing the desired output 

of type r and undesired output of type p.  However, 
the direct use of the EBM model does not allow for the 
ranking of cases where there may be more than two 
efficient units in the same period. The problem can be 
effectively addressed by the super-efficient DEA model 

Level 1 
indicators

Level 2 
indicators Details

Input

Land Area sown in crops

Labor Number of laborers on the 
plantation

Machine Power of plantation 
machinery

Irrigation Amount of water used for 
agriculture

Pesticide Pesticide use

Fertilizer
Pure amount of 

agricultural fertilizer 
applied

Agro-film Amount of plastic film 
used in agriculture

Output
Desired output The gross value of 

agricultural production
Non-desired 

output
Carbon emissions from 

agriculture

Table 1. Input-output indicators.
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developed [22]. Therefore, the provincial green TFP  
in agriculture was assessed using the super-effective 
EBM model.

Based on the Malmquist productivity index 
suggested [23], several researchers have developed the 
ML index [24] and the GML index [25], which take into 
consideration non-expected production. When building 
the production frontier, the GML index based on the ML 
index, which, in comparison to the ML index, reflects 
the long-term trend of productivity growth, takes 
into account all period observations. This effectively 
resolves the issue that linear programming with mixed 
directional distance functions tends to produce no 
workable solution.

Standard Deviation Ellipse Modeling

The standard deviation ellipse method is one 
of the classic methods for analysing the directional 
characteristics of spatial distribution [26]. It is based on 
the mean and standard deviation of a given variable, the 
ellipse formed by calculation, and the different elements 
that make up the ellipse can be interpreted and analysed 
for the spatial distribution of the object of study. The 
ellipse represents the spatial distribution range of the 
variable. The center of the circle, or the mean center, 
is the center of gravity of the spatial distribution of the 
variable. The long and short axes of the ellipse represent 
the degree of dispersion of the variable, respectively. 
A change in the azimuthal angle indicates a change in 
the primary trend of the distribution. The direction of 
the long axis is the direction of the spatial distribution. 
By comparing the differences in the standard deviation 
ellipses formed by the data from different years, the 
spatial distribution of the variables over time is analyzed 
for changes in the range and direction of the trend. Due 
to its efficacy and intuitiveness, it has been frequently 
utilized to study the spatial development trends of the 
economy, geography, and crime [27].

Kernel Density Estimation Model

Kernel density estimation is a nonparametric test.  
It is used to estimate an unknown density function. 
Unlike parameter estimation, which requires 
assumptions about the distribution of the data, kernel 
density estimation is a method of fitting distributions 
to the data themselves and studying the characteristics 
of the data distribution. In this study, the distribution 
pattern of green TFP in agriculture is described using 
continuous density curves using the kernel density 
estimation approach, and its evolutionary traits are then 
examined. The estimated formula is as follows:

             (6)

where K is the kernel function and h is the bandwidth.

GeoDetector Model

According to Wolf and Ghosh [28], GeoDetector 
is a statistical technique that may be used to examine 
the factors causing regional variability that affect green 
TFP in agriculture. The rationale behind the method’s 
ability to show that a factor can influence the spatial 
heterogeneity of agricultural green TFP is that there is 
spatial heterogeneity in the factors that influence changes 
in the productivity of something in the first place, while at 
the same time, there is significant consistency or similarity 
between the spatial distributions of these drivers and 
the spatial distribution of agricultural green TFP. In the 
application of this study, the GeoDetector allows for the 
following analyses: (1) factor detection, i.e., analyzing 
whether the selected variables are drivers of spatial 
divergence in agricultural green TFP; and (2) interaction 
detection, i.e., analyzing whether the interactions of the 
selected variables are stronger in terms of their degree of 
influence than the individual variables.

Fig. 1. China’s overall agricultural green TFP index and its decomposition, 2002-2020.
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Results and Discussion

Spatial and Temporal Patterns of Agricultural 
Green TFP

Characterizing the Time-Series Distribution 
of Agricultural Green TFP at the National Level

This research has generated the agricultural green 
TFP growth index as well as the decomposition indices 
GEC and GTC for the 30 sample provinces from 2002 
to 2020, as shown in Fig. 1, based on the data and 
methodology given in the preceding section. Overall, 

from 2002 to 2020, agricultural green TFP fluctuated 
repeatedly. However, the average annual growth rate 
is 3.21%, which is evidence that China’s agricultural 
green TFP has been optimized over time. From the 
view of the trend of the sub-phase, from 2002-2012, 
the change of agricultural green TFP is not very stable, 
repeated oscillation within a certain interval, after  
a period of stable change, after 2015 there is a clear trend 
of higher, after being in a high level of fluctuation. The 
average values of GTC and GEC were 1.042 and 0.991, 
respectively, and GTC was significantly higher than GEC 
in most years. In terms of averages, the advancements 
in technical efficiency have hardly changed in our 
agriculture, but the long-term trend has been one of 

Fig. 2. Elliptical change in the standard deviation of green TFP in Chinese agriculture, 2001-2020.

Fig. 3. Migration path of green TFP center of gravity in Chinese agriculture, 2001-2020.
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slow growth in efficiency improvements. The above 
study’s findings suggest that efficiency improvement 
must also play a part in the growth of green agriculture 
in China. However, there is still a great deal of potential 
to investigate efficiency improvement. It is worth noting 
that from 2015-2018, there was a definite rising tendency 
in GEC, while there were relatively large fluctuations 
in GTC. The opposite was true in 2018-2019, with 
GTC seeing a large increase and GEC seeing a more 
significant decrease. If statistical data are excluded, this 
phenomenon deserves high attention.

Spatial Distribution Patterns of Agricultural Green TFP

It is possible to characterize variations in the 
geographical distribution of China’s agricultural green 
TFP by generating the standard deviation ellipse of 
various years using the ArcGIS program, and then by 
comparing and monitoring changes in the ellipse’s 
various components. In Fig. 2, in general, the spatial 
evolution of green TFP for interprovincial agriculture 
in China from 2001 to 2020 is characterized by a clear 
shift to the east-north direction. The area of the ellipse 
increased and the distribution of agricultural green TFP 
eventually showed an expanding trend. The center of 
gravity of the standard deviation ellipse, the distribution 
range, and the direction will be used in this research to 
explicitly evaluate changes in the spatial distribution 
pattern of green TFP in China’s interprovincial 
agriculture.

The geographic center of the distribution of 
agricultural green TFP is shown in Fig. 3 as the center 
of the standard deviation ellipse. The center of gravity 
of China’s agricultural green TFP throughout the 
observation years, according to Fig. 3, can be shown 
to be mostly found between 111.48°E and 112.71°E 
and 32.85°N and 33.49°N, all of which are spread 
inside Henan. It demonstrates that, in an east-west 
orientation, the country’s green TFP is, on average, 
higher in the east than it is in the west. Specifically, 
the agricultural green TFP has experienced “Northeast 
(2001~2005) - Southeast (2005~2010) - Southeast 
(2010~2015) - Northwest (2015~2020)”, with a total 
distance of 189.32km, including a total movement of 
79.28km to the east and 75.57km to the north. In other 
words, as time goes on, the center of gravity of green 
TFP in Chinese interprovincial agriculture tends to 
shift toward the northeast. From 2005 to 2015, the 
center of gravity continued to shift to the southeast. 
At this time, the eastern coastal region of China, 
which has experienced rapid economic growth, has 
switched to an intensive development mode and there 
has been an increase in public awareness of the need 
to protect the agro-ecological environment. As a result, 
the green TFP of agriculture has improved due to the 
efficient use of resources and the decrease in pollution 
emissions. Contrary to the western and central regions, 
which were fueled by the “Western Development” 
and “Rise of Central China” economic policies, high 

pollution, and high inputs were used to promote the 
economy’s rapid development while disregarding the 
protection of the agro-ecological environment, leading 
to an increase in pollutant emissions and a decrease in 
the green TFP in agriculture. From 2015 to 2020, the 
center of gravity shifted to the northwest. The state 
started the “Ecological Civilization Construction” and 
“Green Agricultural Development” plans at this point, 
especially in the western part of the country, which 
has been developing in a sloppy manner, to improve 
the quality of the agro-ecological environment of the 
northwestern part of the country. This was done in 
recognition of the significance of environmental issues 
to the development of human society. The improvement 
of agricultural green TFP in these areas has also been 
indirectly facilitated by a number of policies, including 
increased environmental protection, strengthened 
resource conservation and management, and ecological 
preservation and restoration promotion. 

The standard deviation ellipse correlation 
characterisation index very little changed overall over 
the observation year, as seen in Table 2. The majority 
of the areas covered by the ellipse are in China’s central 
and southeastern coastal regions, which have stronger 
economies and a better basis for agricultural output. 
This is consistent with how China’s agricultural regions 
have been developing over time.

The long-axis standard deviation is always greater 
than the short-axis standard deviation as seen from the 
standard deviation ellipse-like variations. The northeast-
southwest orientation dominates the geographical 
distribution of agricultural green TFP. The elliptical 
short-axis standard deviation had the opposite tendency 
to the long-axis standard deviation between 2001 and 
2010. Specifically, the standard deviation of the long 
axis of the ellipse falls and then grows, whereas the 
standard deviation of the short axis climbs and then 
declines. However, both changes are not large, so the 
ellipse area is slightly less, showing a contraction trend. 
From 2010 to 2015, the short-axis standard deviation 
exhibited a noticeably strong downward trend, shown in 
the value decline from 1056.06 km in 2010 to 983.57 km 
in 2015, demonstrating a south-to-north contraction of 
China’s agricultural green TFP. The long-axis standard 
deviation remains in a more stable state, leading to 
a reduction in the ellipse’s area. It is still the short-
axis standard deviation that shows a large magnitude 
of change from 2015 to 2020, exhibiting an increasing 
trend of change. The standard deviation ellipse is 
spreading once more in an east-west direction, and 
the area of the ellipse grows, rising from the lowest 
value in the calendar year to 997.55 km in 2020. In 
conclusion, China’s agricultural green TFP distribution 
range mostly exhibits a narrowing-expanding tendency, 
showing that a balanced development trend dominates 
its geographical distribution.

The direction of the major trend in the geographical 
distribution of green TFP in interprovincial agriculture 
in China is shown by the standard deviation ellipse 
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rotation angle. The agricultural green TFP of the 
provinces located in the southwestern direction of the 
ellipse axis grows faster than the provinces located 
in the northeastern direction of the ellipse, and vice 
versa, slower than the northeastern direction of the 
provinces, according to an increase in the angle of 
rotation and a clockwise rotation of the long axis of 
the standard deviation ellipse. When Table 2 is taken 
into consideration, it becomes evident that China’s 
interprovincial agricultural green TFP rotation angle 
follows a developmental trend that initially rises, 
then falls, and eventually stabilizes. This leads to the 
agricultural green TFP displaying a spatial distribution 
pattern from northeast to southwest. Regarding the 
extent of variation in the rotation angle of the ellipse, it 
increased from 15.62° in 2001 to 60.68° in 2005, which 
was the maximum value of all years, indicating that the 

northeast-southwest distribution pattern was strengthened 
during this period. However, from 2010 onwards, the 
rotation angle generally showed a decreasing trend of 
a certain magnitude, eventually stabilized, and reached 
40.80° in 2020, indicating that the distribution pattern 
was again weakened to a certain extent. 

Dynamic Evolution of the Spatial and Temporal 
Distribution of Green TFP in Chinese Agriculture

The kernel density estimation method was further 
used to depict the absolute difference distribution of 
agricultural green TFP, especially to describe its overall 
shape and dynamic evolution law in terms of distribution 
location, distribution trend, distribution extension, 
and polarization trend. Fig. 4 and Table 3 illustrate  
this information.

Year 2001 2005 2010 2015 2020

Center of gravity longitude 111.48 111.89 112.28 112.71 112.40

Latitude of the center of gravity 32.85 33.49 33.42 33.35 33.47

Distance traveled (km) - 81.51 35.66 40.56 31.59

Long half shaft (km) 1154.46 1130.74 1136.48 1126.39 1124.80

Short half shaft (km) 1060.59 1065.82 1056.06 983.57 997.55

Azimuth (degrees) 15.62 60.68 59.92 38.56 40.80

Table 2. Standard deviation ellipse related parameters of green TFP in Chinese agriculture, 2001-2020.

Fig. 4. Estimated three-dimensional kernel density in China and different food-producing regions, 2001-2020.
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In terms of the movement of the wave peak,  
the position of the main peak of the green TFP of 
agriculture in the country as a whole and in the three 
major regions, in general, has a tendency to shift to 
the right, and the efficiency of all of them has been 
effectively improved, which is corroborated by the 
objective facts in the previous section. Specifically, 
the position of the main peak representing the whole 
country in Fig. 4a) shows a weak change of "left shift 
- right shift", indicating that there hasn’t been much of 
a change in the general degree of green development 
in agriculture. As can be seen in (a), the kernel density 
curve shows an overall shift to the right starting in 
2006. At this stage of development, in addition to 
being influenced by the economic policies of different 
regions as mentioned above, emission and carbon 
reduction have also become important constraints on 
economic development. Guided by the concept of green 
development, local governments have implemented 
“low-carbon agriculture” policies, which have led to a 
steady decline in the intensity of agricultural carbon 
emissions. The distribution curves of different food-
producing regions all show rightward shifts of different 
magnitudes, indicating the effectiveness of these 
regions in reducing emissions and sequestering carbon 
in agriculture. It is worth noting that the main grain 
marketing region experienced a greater leftward shift in 
the curve than the other two regions during the sample 
period, implying that the pressure to reduce carbon is 
greater in the more economically developed regions and 
that there is still greater difficulty in the implementation 
of some green policies. 

In terms of the distribution pattern of the main 
peaks, the absolute differences in agricultural green 
TFP within the country as a whole and within the 
main grain marketing areas are gradually decreasing, 
in contrast to the absolute differences in agricultural 
green TFP within the main grain producing areas and 
the balance of production and marketing areas, which 
are expanding. Specifically, the main peak in Fig. 4a) 
undergoes a recurring process of “falling-rising-falling-
rising”, while the width shows a trend of “decreasing-
increasing-decreasing”. Compared with 2010, the main 
peak in 2020 became "sharp and narrow", indicating 
that with the gradual promotion of China's agricultural 

emission reduction and carbon reduction policies, the 
differences in agricultural green TFP across regions 
of the country have been narrowing over a relatively 
long period. In particular, the peak in the main grain 
marketing area showed an upward trend during the 
sample study period, and the shape of the wave peak 
gradually narrowed from a broad peak to a sharp peak, 
indicating that the situation of absolute differences in 
agricultural green TFP in the region has improved. In 
contrast, the main food-producing and the balance of 
production and marketing areas, which are slower to 
develop, generally show a decline in the height of the 
main peaks and a widening of their widths, but the 
changes in the absolute regional differences between the 
two are slightly different. 

In terms of distributional extensibility, the 
distribution curve of agricultural green TFP for the 
country as a whole and for different food-producing 
regions shows the phenomenon of trailing to the right, 
which is caused by the existence of cities with higher 
agricultural green TFP within the regions. In addition, 
each region’s agricultural green TFP eventually shows 
 a converging trend, indicating that differences within 
the group are gradually narrowing, and the cities with 
higher agricultural green TFP within the region are 
getting closer to the average. In terms of polarization 
trends, the 3D kernel density profiles of (a) (c) (d)  
in Fig. 4 follow a more consistent trend. This is 
evidenced by the fact that there are clearly multiple 
side peaks from 2001-2007 to only one side peak from 
2008-2020. It demonstrates that polarization is waning 
throughout the nation as well as in the key regions for 
grain marketing and the balance of production and 
marketing. In contrast, the kernel density curves of 
the main grain production regions showed a single-
peak distribution, indicating that there is no obvious 
polarization characteristic of the agricultural green 
TFP level in this region. The side peaks in the main 
grain marketing area and the balance of production and 
marketing area are significantly sharper and narrower 
than those in the Beijing-Tianjin-Hebei area, which 
also indicates that after the neutralization of the three 
areas, the polarization of the overall agricultural green 
TFP level of the whole country has been alleviated to  
a certain extent. 

Region Distribution location Main peak distribution 
pattern Distribution ductility Number of peaks

Nationwide Right shift Peak rises, width 
decreases

Right trailing, extended 
convergence Single or double peak

Major agricultural 
region Right shift Lower height, wider 

width
Right trailing, extended 

convergence Single

Major food marketing 
area Right shift Lower height, wider 

width
Right trailing, extended 

convergence Single or double peak

Balance of production 
and sales area Right shift Peak rises, width 

decreases
Right trailing, extended 

convergence Single or double peak

Table 3. Characterization of the dynamic evolution of the country and different food-producing regions.
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Analysis of Influencing Factors

On the basis of revealing the evolution pattern of 
green TFP in Chinese agriculture, a GeoDetector model 
was used to investigate the impact of each driving 
element on the evolution of green TFP in agriculture 
[29]. The spatial differentiation of geographical entities 
can be influenced by elements of the economy, society, 
and natural environment [30, 31]. To investigate the 
elements influencing the changes to green TFP in 
agriculture, taking into account the accessibility 
of data, relevant variables from natural conditions, 
agricultural production conditions, agricultural 
technology level, agricultural economic development 
level, and agricultural support policies were selected 
as driving factors using relevant studies [32]. Table 4 
shows the calculation process of each factor, mainly 
using the quartile classification method to categorize 
the independent variables. The aforementioned 
data information was gleaned from the National 
Bureau of Statistics’ database as well as the China 
Statistical Yearbook, China Rural Statistical Yearbook, 
Compendium of Statistical Data for 60 Years of New 
China, and other sources.

Analysis of Factor Detection Results

From the perspective of horizontal comparison of 
different driving factors, the three dimensions of the 
natural environment, agricultural resource endowment, 
and socio-economic policies have more significant 

differences in their respective impacts on green TFP 
in agriculture in different periods. Using 2010 as a 
cut-off point, agricultural production-related variables 
including the level of automation, the severity of 
disasters, and the crop structure were more significant 
prior to that year. Two factors that represent the level 
of economic development of agriculture and the fiscal 
support policy for agriculture, which represent the socio-
economic policy dimension, play a more significant role 
in the changes in green TFP in agriculture after 2010,  
in addition to the replanting index regarding the drivers 
of agricultural production. Both q-values reached 0.39 
and 0.46 in 2020. 

Based on the longitudinal time evolution perspective, 
each driving factor shows a fluctuating trend over time. 
In terms of the dominant factors, the explanatory power 
of the replanting index, agricultural output per capita, 
and the level of financial support for agriculture has 
been increasing as a whole. Specifically: the overall 
increase in explanatory power is very significant, 
with the q-value of the replanting index rising from 
0.13 in 2001 to 0.28 in 2020. The q-value of per capita 
agricultural output increased from 0.18 in 2001 to 0.39 
in 2020. The q-value of the level of financial support 
for agriculture increased from 0.25 in 2001 to 0.46 in 
2020. This shows that the effect of regional agricultural 
production circumstances, economic growth, and the 
extent of state assistance (administrative intervention) 
for agriculture on the geographical divergence of 
green TFP in agriculture is increasingly growing. The 
level of agricultural economic development indirectly 
affects the cultivation of excellent crop varieties, the 
application of energy-saving and emission-reducing 
technologies, and the improvement of agricultural 
production management. All of these measures can 
effectively promote reducing agricultural CO2 emissions 
and increase agricultural green TFP. It is also worth 
noting that the degree of mechanisation did not pass a 
statistically significant test in the factorial probe. This 
suggests a relatively limited impact on TFP growth 
in green agriculture. Possible causes include the fact 
that, on the one hand, growing mechanization boosts 
agricultural labor productivity and raises expected 
agricultural production. On the other hand, mechanised 
agricultural production relies mainly on oil and other 
energy sources, and increased mechanization will result 
in greater usage of petrochemical resources and a rise in 
carbon emissions, while the obsolescence of machinery 
and equipment will exacerbate energy consumption, 
which objectively leads to an increase in agricultural 
carbon emissions. Together, the two factors have a 
negligible impact on the regional divergence of green 
TFP in agriculture.

Analysis of Interaction Detection Results

Interaction detection reflects differences in the 
effects on agricultural green TFP when factors act 
together versus when factors act alone. The detection 

Characterization 
type Driving factor Description of 

variables

Natural 
conditions

X1: Extent of 
damage the degree 

of agricultural 
disaster

Area affected by 
crops/total sown 

area of crops

Conditions of 
agricultural 
production

X2: the agricultural 
cultivation structure 

X3: the multiple 
crop index

Area planted with 
food crops/total area 

sown with crops; 
area sown with 

crops/area under 
cultivation

Level of 
agricultural 
technology

X4: Degree 
of agricultural 
mechanization

Total power 
of agricultural 

machinery/total 
sown area of crops

Level of 
agricultural 
economic 

development

X5: Gross 
agricultural output 

per capita

Gross agricultural 
product/Agricultural 

employees

Agricultural 
support policies

X6: Level of 
financial support to 

agriculture

Agriculture, forestry, 
and water affairs 

expenditure/financial 
expenditure

Table 4. Drivers of spatial divergence of green TFP in Chinese 
agriculture.
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results reveal that the driver interactions all show  
two-factor strengthening or non-linear strengthening, 
and there is no independent effect or non-linear 
weakening. This suggests that the formation of the 
spatiotemporal pattern of interprovincial agricultural 
green TFP in China is the result of the cooperative 
action of the drivers. The explanatory power of 
the factor interactions on agricultural green TFP  
were all enhanced to different degrees relative to the 
single-factor effects, confirming that the changes in 
agricultural green TFP are complex factor interaction 
processes. 

Based on Fig. 6, the comparison shows that the two-
factor interaction has significantly greater explanatory 

power for agricultural green TFP than the single 
factor, but the driving factors that play a decisive role 
are changing in different periods due to the constant 
changes in market factors and government factors. 
Natural environmental factors were the primary cause 
of the spatial differentiation of green TFP in agriculture 
in China during this time, as shown by the significantly 
higher interaction between the level of disaster damage, 
which represents natural conditions, and other factors in 
2001 and 2005. The area of crop damage increases and, 
assuming that the input of means of production remains 
constant, the undesired output remains constant, and the 
desired output decreases. The annual direct economic 
losses of the country due to natural disasters in the 

Fig. 6. Interaction detection results of drivers of spatial differentiation in the evolution of green TFP in agriculture.

Fig. 5. Detection of factors driving spatial divergence in the evolution of green TFP in agriculture.
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agricultural sector continue to increase [33, 34], which 
not only lowers agricultural output and farmer income 
but also disrupts the environment for agricultural 
production, making it difficult to improve agricultural 
green TFP. The amount of mechanization, which is a 
measure of agricultural technology, interacted strongly 
with other factors in 2010. Government subsidies for 
the purchase of agricultural machinery have been 
increasing since 2006, and this trend has continued over 
this time period, which has led to a rise in the amount 
of agricultural machinery. And the increasing number 
of agricultural machineries makes the input of farm 
machinery for cultivation continue to increase, which 
in turn promotes the strengthening of the interaction 
between it and the other factors. By 2015, the extent 
to which agriculture is financially supported, which 
represents the financial support policy, has the strongest 
interaction with other factors. At this period, as public 
investment in agriculture and financial support continue 
to increase, agricultural infrastructure tends to improve, 
the structure of the agricultural industry becomes 
more rational, and the management model is constantly 
innovated. Coupled with the gradual emergence of the 
positive external effects of industrial agglomeration 
itself, it encourages the continuous advancement of 
agricultural science and technology and the efficient 
use of resources, which reduces undesirable outputs 
and raises the green TFP of agriculture. In 2020, the 
planting structure, which represents the conditions of 
agricultural production, has increased its interaction 
with other factors. Cultivation structure adjustment 
affects agricultural carbon emissions, and the growth 
characteristics of different crops vary, with some 
differences in the amount of fertilizers and other 
agricultural chemicals needed. According to studies, 
food crops typically require less agrochemicals than cash 
crops, such as fertilizers, pesticides, and agricultural 
films. So as the proportion of food crop cultivation 
rises, the total amount of agricultural chemical inputs 
may decline, and carbon emissions are subsequently 
reduced. Thus, the interaction of cropping structure with 
other factors at this stage is responsible for the spatial 
differentiation of green TFP in agriculture.

Conclusions and Policy Recommendations

Based on panel data of agricultural production of 
30 Chinese provinces from 2001 to 2020, this study 
measured the interprovincial green TFP of agriculture 
using the super-efficient EBM model and examined 
the trend of agricultural green TFP over time using 
the GML productivity index. After examining the 
features of its spatial differentiation using standard 
deviation ellipse analysis and kernel density estimation, 
we next used GeoDetector to investigate the variables 
influencing the spatial differentiation of green TFP in 
Chinese agriculture, with the main conclusions obtained 
as follows:

1) China’s agricultural green TFP, which has a long-
term upward trend and an average annual growth rate 
of 3.21% between 2001 and 2020, is mostly fueled by 
technological advancements in the field of agriculture.  
2) In interprovincial agriculture in China, the 
geographical evolution of green TFP indicated a 
change in the direction of the east-north, and the spatial 
distribution indicated an expanding tendency with  
a northeast-southwest distribution pattern. 3) The 
position of the main peak of agricultural green TFP 
in the country as a whole and the three main food 
regions generally shows a rightward trend. The 
absolute difference in agricultural green TFP within 
the country as a whole is narrowing, and the cities 
with higher agricultural green TFP within the region 
are approaching the average level, and the overall 
polarization of agricultural green TFP level has been 
alleviated to some extent. 4) The elements impacting 
the geographical differentiation of agricultural green 
TFP include fundamental agricultural endowments, 
socioeconomics, and the natural ecological 
environment. The effects of various factors on the 
spatial differentiation of agricultural green TFP vary 
significantly. The primary variables influencing 
geographical difference are the replanting index, 
agricultural production per capita, and the amount 
of financial assistance provided to agriculture. When 
interactions between the dominating factors took place, 
the impacts on the spatial differentiation of agricultural 
green TFP were amplified; the kind of enhancement was 
dominated by non-linear enhancement and reinforced by 
two-factor enhancement. 

The synthesis of the above analysis mainly obtains 
the following insights: First, there is still significant 
potential for development in the effectiveness of 
agricultural technology, despite the fact that China’s 
agricultural green TFP has been continuously growing 
and agricultural technological progress is currently 
perceived as playing a leading role. This means that 
the efficiency of green technologies in agriculture 
should be improved by increasing the efficiency of the 
use of chemical inputs and agricultural tools. At the 
same time, in order to assure the pace of advancement 
of agricultural green technology, it is also required to 
promote research and development of agricultural green 
production technology and to increase the promotion 
and transformation rate of agricultural green technology 
accomplishments. Secondly, agricultural green TFP 
is characterized by significant spatial differentiation, 
for which regions should formulate corresponding 
development strategies in the light of their own agro-
ecological development status, and at the same time 
focus on inter-regional synergistic cooperation to 
achieve improvement in cooperation. Regions with 
higher levels of agricultural green TFP growth should 
play a radiation-driven role, while regions with lower 
levels of growth should combine their own development 
conditions, learn from the advanced experience of 
regions with higher levels of growth, and continuously 
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improve their own agricultural green TFP. Continue 
to strengthen exchanges and cooperation between 
different regions, and in particular, quicken the complete 
interchange of technology, energy, and other elements 
impacting green TFP in agriculture. Third, there are 
many distinct variables that affect the geographical 
differentiation of agricultural green TFP, and there are 
clear disparities in the effects of various driving forces. 
It is crucial to concentrate on and enhance the effect of 
dominating variables on the geographical differentiation 
of green TFP in agriculture. This study systematically 
analyzes the spatial and temporal variability of 
agricultural green TFP in China and its affecting 
factors, but the specific roles of different factors remain 
to be explored.
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